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ABSTRACT

We calculate nucleon magnetic form factors using perturbative
QCD for several distribution amplitudes including a general one
given in terms of Appell polynomials. We find that the magnitude
and sign of both nucleon magnetic form factors can be explained
within perturbative QCD. The observed normalization of G, requires
that the distribution amplitude be broader than its superhigh
momentum transfer limit, and the Gln/Glp data may require the
distribution amplitude to be asymmetric, in accord with distribution
amplitudes derived from QCD sum rules. Some speculation as to how
an asymmetric distribution amplitude can come about is offered.
Finally, we show that the soft contributions corresponding to the

particular distribution amplitudes we use need not be bigger than
the data.

I. INTRODUCTION

There has been much discussion about the validity of using
perturbation theory with QCD (PQCD) to make predictions for

*  Permanent address



exclusive processes at experimentally feasible energies.l”"" It

is generally granted that the predicted scaling behaviour works, by
luck or otherwise, at reasonably low Q’. Absolute normalisations
then become the next testing ground for PQCD. Unfortunately the
normalisation, unlike the energy or momentum transfer scaling
behavior, is dependent upon unknown and/or perhaps not well
understood wave functions of the quarks in a badron.1’3:8:8 Still,
the question remains whether wave functions can be found for which
the calculated normalizations are in agreement with the data. In
this paper it is shown that such wave functions can be found, and
the nature of these wave functions is examined, but no firm stand
can be taken on whether or not these wave functions are the correct
ones. Ab initio calculations of the correct nuclear wave functions
requires the use of non-perturbative techniques beyond the scope of
this paper.

In order to clarify the discussion, several categories of
predictions of PQCD for exclusive processes can be distinguished.

(1) 8caling behavior -- high-energy or high-momentum transfer
scaling behavior of form factors or differential cross sections can
be obtained.” Taking electromagnetic form factors as an example,
the helicity conserving one is always the biggest and goes like

F@%) = [1 + 2t eed] &)

® )“‘

for & system of N constituents. Predictions of power law behavior
tend to work well. Figure 1 shows one example: the proton magnetic
fora factor. The currently published data® for Q G is shown as a
function of Q and the PQCD scaling behavior appearl substantially
right for Q* 2 5 GeV?.

(2) Normaligation -- the normalisation of the form factors
(the coefficient A in Eq. 1) or scattering amplitudes could be
obtained. These calculations depend on the quark wave functioans,
and in this paper explicit calculations for the nucleon magnetic
form factors are shown. (There has been a claim®'* that no
reasonable wave function can give a PQCD calculated form factor as
large as the data, so that the agreement seen with the PQCD scaling
behavior in Fig. 1 is just luck.)



(3) Logarithmic corrections -- the logarithmic corrections to
the power law behavior can be calculated.?’? Like the
normalisation, these calculations are in general wave function
dependent. For example, the leading term in a form factor is more
completely given as

rQ?) = [Qz)lu_1 [2,@®]"? 4 (1 2375 . (@)

The 7, are calculable, positive, and monotonically increasing with
j, but the dij are wave function dependent. Only one prediction is
wave function independent, and that is the log §* behavior at
sufficient Q’ that only one term in the above sum survives. This
requires extremely high Q. In contrast to category (1), "logarith-
aic asymptopia' is now needed rather than "power law asymptopia;®
that is to say, log Q’ must be large rather than just Qz being
large.

(4) Polarisation -- quantities specifically involving polariza-
tion can be calculated.®

In this paper the normalisation of the nucleon magnetic form
factor, category (2) above, will be studied, using plausible wave
functions or distributioa amplitudes including a flexible class of
distribution smplitudes that can be expressed in terms of the first

six Appell polynonials.l""

(These are e igensolutions of the evo-
lution equation for the distribution amplitude. For this paper any
basis set would do as well, but the Appell polynomials are very
convenient for apy studies of the logarithmic Q* dependence of the
form factor.) It will be shown that it is possible to match at high
Q* the observed normalization of th, without running afoul of wave
function normalisation conditions. The simplest wave functions,
however, are not the best ones to use. The observed normalization
of an requires a broad distribution amplitude, and moreover the
observed value of the ratio Glplcin may not be readily explained
without asymmetric distribution smplitudes.® Indeed, a distribution
amplitude based on QCD sum rules which shows an asymmetry in the
quark spatial wave function has already been suggested'by Chernyak
and Zhitnitsky‘. The foregoing is discussed in Section II. Section



IV includes some speculation about how it is possible to have an
asympetric distribution amplitude even though SU(6) results, which
are based on completely symmetrical spatial wave functions, work
fairly well for quantities measured at low Q’.

Section III contains a study of the "soft contributions.'® 1In
QCD the impulse approximation gives the correct leading order (in
1/Q*) form factors at high §® and the result comes from the tail,
meaning the high transverse momentum part, of the quark wave func-
tion. High enough transverse momenta allow using perturbation
theory with QCD and indeed the PQCD calculation can be seen as a way
of generating the correct tail of the wave function and immediately
using it in an impulse approximation calculation of the form factor.
If we do an impulse approximation calculation of the form factor
keeping only the low transverse momentum part of the wave function,
for example by purposely using a wave function like a gaussian which
is plausible at low momenta but falls much too quickly at high
momenta, then we get the "soft contributions.® At high Q* the soft
contributions fall faster than the PQCD or "hard" contributions so
the PQCD result must eventually dominate, but at any Q’ the size of
the contributions is a test of the validity of the approximations
that go into the PQCD result. The question is whether the soft
contributions are significant or even dominant at present experimen-
tal Q'. It is found for some wave functions of interest that the
soft contributions may be important but are not necessarily larger
than the PQCD result. As discussed in Section III, it is important
to note the effects of the tail of the wave function on wave func-
tion parameters.

A summary and some speculation is given in Section IV.
IT. NUCLEON FORM FACTORS IN PQCD

One can show that in QCD the impulse approximation contains the
leading contribution to the form factor at high §* and further that
the leading coatribution to either Fl or G (these two are equiva-
lent to leading order since F’ falls faster by one power of Q’) is

[Fig. (2)]



6 = [ [ax1[ar] ¢"(x,0) Ty(x,7,Q $G.9 . (3)

where ¢, the three quark distribution amplitude, and the other quan-
tities in Eq. (3) are defined below. To obtain the leading contri-
bution it is sufficient to consider the three quark part of the wave
function; Fock components with more constituents require more gluon
exchanges to give all the constituents parallel momenta in the final
state and their contribution to the form factor fall faster with Q’.
We work in an infinite momentum frame where the entering proton is
moving along the s-axis. The transverse momentum components of the
ith quark are

bir = (5517 4
and the momentum fractions are

x. = k. /p" (5)

i 1

where k1+ = k1° + ki. and p is the proton momentum. For the three
quarks in the initial proton

Ekﬂ' =0 (6)

and
> X, = 1. (7)

In the expression for the form factor, the distribution amplitude ¢
is

60,0 = [Yaig] (s, (®)

where ¢ is the three quark wave function. The differentials are

[dx] = I dx; 6(1- Ex,) (9)



and

2
d“k.
T 3 .(2)
[ ]=n[—¢].1sra (€ k.n) (10)
dkT 1613 3T
The wave function is normalised by
2 _
J [ax) [dieg] 190ekp) 12 =Py (11)
The "hard scattering amplitude® TE is the scattering amplitude
for three parallel quarks going into three parallel quarks. There
are 42 diagrams that can be drawn for Tl’ but only 14 are non-gzero

and only the four drawn in Fig. 3 need be calculated, the others

being obtained by symmetries. If e is the operator that gives the
charge of quark j, then'’3

8 %, 3
[ ~ ag(q )]2 2 {e;T; + (x+*7)} (12)
g =11

Ty =

with G, = 2/3, and

e — . —1 L
22 00902 xy(x )y, (1-y) 2

1 1 o T (1es3 (13a)
- x2x3(1"x3) Y273(1'yl) - 3(1 )

and

T = 3 1
2 xlxa(l'xlj 7173(1‘73)

(13b)

Note the I/Q‘, the log(Q’/A’) dependence within the strong coup-
ling parameters e , and the singularities near the kinematic boun-
daries of X, and 1 A [0S XyY, 1) .

The proton wave function is not at present calculable. However,
QCD sum rules allow some moments of the proton wave function to be



determined, which in turn sets conditions on model wave funct.ions,5
and lattice gauge theories may eventually give an ab initio calcula-
tion. Some progress is being made on the pion wave function using
lattice gauge theory.l' |

Accordingly GI will be calculated for two general classes of
wave functions, starting with a simple one-parameter symmetric wave
function. This will show what is necessary to get the right normal-
isation and will also display the limitations of symmetric spatial
wave functions that seem to persist even in more sophisticated ver-
sions of the same.

(A) Simple symmetric wave function. A simple and factorable
form of the wave function is*

“Ik..2/2a%
Poxkp) = Napxgxg)T o 11 e (14

from which
$(x) =X (xlx2x3)ﬂ . (15)

This is a one-parameter family of wave functions, the parameter
being the power 5. The constants N and N° are fixed by the wave
function normalisation condition, and the parameter a by the RMS
value of k!, which should be some reasonable value; one value sug-
gested11 is a = 0.32 GeV. A gaussian in the transverse momentum is
incorrect at high kr and section III will show the effect of addi-
tional terms in the transverse momentum wave function. However, the
gaussian is useful for now to show how the usual normaliszation con-
dition on the wave function implies constraints between the size of
Glp and the RMS quark transverse momenta.

The integrals for Gl can be done analytically. The power must
satisfy # > 1/2 to make those integrals converge. One way to begin
looking at the results is to examine the ratio Glplcln ,» plotted in



Fig. 4. The proton form factor has a sero at =1 and the neutron
form factor has a zero at

1
{12

¥ 0.79 . (18)

0f course, the neutron and proton form factors have opposite signs
and this constrains the values of f which may be chosen. Further,
since it is the proton form factor that is positive, % is con-
strained to 1/2 ¢ g £ 0.79. (Incidentally, there was for a while an
error in the literature in the overall sign of Tn and hence of the
calculated Glp' This had the effect of requiring f>1 with conse-
quent large effect on the normalisation.)
The result for c, using the wave function (14) is

v, @5 = 3 1 g %t g; 17 N, 2y, a7

with
2
N" ‘6g+2) (18)
[(2n)! ]
and
1)2(9-1)1(27-2) !
X =" 1Ern (19)

For 5=0.6, a = 0.3, and a = 0.32 GeV this gives

q? Gy * 1.1 Gev? (20)

which is near the data for Q’ 2 5 GeV:.

This wave function demonstrates that the observed size of the
proton form factor can be obtained, at least at high Q', from PQCD.
It shows that the experimental normaligation requires a broad
(7 < 1) rather than = narrow (n > 1) distribution amplitude. It
also shows the possibility of a catastrophe that did not occur: it
could have happened that the distribution amplitudes that gave a



normalisation compatible with experiment also gave the wrong sign
for Glp’ but thi=z was not the case.

On the other hand, this wave function may be too simple, and
whether it can give the value of Gln/GKp seen experimentally depends
delicately on just what that ratio is. Some comments on the G'
data are in order.

Strictly speaking, there is no Gln data away from Q’:O. There
is data on 0, the differential cross section for e-n elastic scat-
tering, at 65 = 2.5, 4, 6, 8 and 10 GeV® but only at one a.ngle.lz
Hence a separation of G'n and G.n is impossible. However, several
things can be learned or are suggestive about Glln by analyzing the
data that is available.

The salient observation is that ¢ /ap falls roughly like 1/Q
from (=ay) b GeV* to 10 GeV? and is roughly 1/4 at the upper Q’.
Neglecting G, gives TE—7E- = G /G and since the contribution of
Gl to 6 really appears negl131b1e st high Q , We can safely say

|2 | <3

at Q* = 10 Gev?. (The sign is known to be negative at Q = 0.)
The falling cross section ratio suggests more. Possibly, anlap
falls because G is dominating o but Q G is not yet constant.

H

However, the observed approximate constancy of Q‘G makes an alter-
native explanation plausible. Possibly, G vn is smsll, i.e., its
leading term at high Q* is small, and then the cross section o is
dominated by G . This requires G to be about the same sige as
Flp or G up and loads naturally to o /a ~ I/Q Incidentally, since
the lesdlng term of G and F are the same, one can tie the high
and low Q data together with the suggestion that F ~ 0 at all Q’.

Returning to the simple symmetric wave funct1on, we can consider
three possibilities.

(i) G /G ¥ - 1/2 More prec1se1y, consider that G /G is
fall1ng with Q until Q = 10 GeV? but is spproxlmately
constant at the value (-1/2) thereafter. The simple sym-
metric wave function cannot give this value; values of



IGln/GlpI between (-1/3) and (-1) are inaccessible (see
Fig. 4).

(ii) G, /G small. This possibility means the distribution
amplltude gives small G, /G at high but experimentally
accessible Q [If we 1et qQ be superhigh, then the evo-
lution with changing logQ® of the distribution amplitude
must be taken into account and the ultimate consequence of
this is known to glve q* G + 0. On the other hand, the
same superhigh Q limit g1ves G , Positive, so that Gln
must have a zero at some finite though possibly superhigh
Q’ and the ratio Gln/Glp should fall to sero before it
ultimately becomes infinite.] This possibility would
require f ® 0.79 in the simple symmetric distribution
amplitude, but this has the high price of requiring a =
0.67 GeV (for @ = 0.3) to give the observed normalisation
of q G

(iii) € o’ e 1nternediate This means G, /G about (-1/3) to
(- 1/4) G, is small enough that o is st111 dominated by
G, » so the 1/9* fall-off of o /a is still naturally
explained. This value of G" nges no prcblem for the
simple symmetric distribution amplitude. The example
y = 0.6 fits here.

(B) More general wave function. For a more general treatment,
expand ¢(x} in polynomials (times a weight factor x X% o decrease
sensitivity to the end point 51ngular1tlesl’). For the present
purposes the particular choice of polynomials is not crucial, but it
is convenient to use polynomials which are standard''? to the sub-
ject and which would be useful for study of logarithmic dependen-
cies. The wave equation for f(x,k,) has a kernel which is dominated
by one gluon exchange for high kt' This observation can be turned
into an "evolution equation" that governs how the distribution

amplitude f(x,Q’) changes with Q* for high Q*. The evolution

10



equation can be solved by the separation of variables to yield

$(x,8%) = xpxxg TN, §;() (21)
where
-1: (o2
N, = Ni(qz) =n, log * [-EE] (22)

The n, are non-calculable constants, but the 7, are calculable!'?

and are positive and monotonically increasing with i. The first six
"Appell polynomials" are

=1
;1 = X17X3
$o = 2 - 3(x;+x;)

;3 =2 - 7(x1+x3) + 8(x12+x32) + 4x,x%,

4 2
$o= 2y - § G Pxh
; =2 - T(x,+x,) + 14 (x,+x 2) + ldx.x (23)
b 173 3 V173 13 -

Quarks 1 and 3 are the ones with parallel spin and some of the above
are symmetric and some antisymmetric under interchange of quarks 1
and 3. If ¢ is split into parts $; and ¢, that are symmetric and
antisymmetric under 1¢+3, then $s and ¢, can be associated with the

corresponding symmetry spin-isospin wave functions for the proton
and neutron

fp(x) = fg(x) (2“leuf-“1u¢dT-dTu¢“T)/ng

(24a)
+ 'A(x) (uTuldf_dTuiuT) /‘? + perm

11



and

'n (I) = 's (X) (del“T +qu1dT-2d1u*dT) /W

(24b)
+ $,(x) (utdidt—dtdluT)/fﬁq + perm .

It is now straightforward to calculate the form factors and

normalization condition. The results arel*:!®

1
8

4
Gy (@) =
2 3

2 220
+ 188 N3 - 144 N'2N3 - fo= N1N3 + 108 N°N3

28 2 _48 _ 22 _28
+ o7 N+ == N,N, = NN, - S NN, + 1of§"N°N4

JIT 2 Al 35
N2 - 4L NN - 59 NN, + 11 NN, + =22 NN, - 42 NN}
9% g e aNg oNg 16 o5

[4'a ] {54 N 2 (25b)

o, @ =
+ 22 le + 42{3° NON1

2
- 6 N,° - 28{3" N,N, + 64 N N,

_170 4 2

5 N3% + 60 NNy + 220

e NN, - 30 K N,

46 _22 28 -
N.N, + NN, - 55 N;N, 10{3" NN,

N2 -
& ENA

52, 4Ly 8 35
N NgNs - 2 N N,Ng + 20 N N}
54 s g Nl M~z MM

12



The GI have now been given for a 6 parameter family of wave func-
tions. Note that there is no N;’ term for the proton. This is the
sane as the gero at %=1 in the previous wave function.

The Ni cannot be made arbitrarily large because there is a wave
function normaligation condition to satisfy. Some trade-off between
normalization of the distribution amplitude and normaligation of the
transverse momentum part of the wave function is possible, but large
Ni will generally lead to large and possibly unacceptable RMS quark
transverse momenta. It can be seen how this happens for a factoriz-
able wave function with a gaussian kr—dependence. Let

P, kp) = $(x) g(ky) (26)
where

[ldky] g(ky) = <g> = 1 (27)
and

4 -Ii2 /20
st = 1228° i/ (28)
a

The normalisation condition becomes

[ P [lag) @) = b @ =2y, @9
or
7hz [165 N2 + 11 N2 + 33 N2+ 17 N2 + L 2
+BEN2 - NN+ 2 NN, + 2NN, - Z NN,
- an + 2] - 'ﬁi al Pyq (30)

where P'q is the 3 quark probability. If only one Ni is non-gzero,

13



the most form factor for a fixed normalization occurs if i = 3. For
this case with P 1 and a, = 0.3, the proton form factor data at
Q" 2 5 GeV? is f:t with @ = 0.39 GeV, a reasonable value. Other
choices of i would tend to give larger, less acceptable values of a.

Let us discuss requirements on the distribution amplitude if it
is to give the observed Glp and Gl. and not imply via the normaliza-
tion condition a quark transverse momentum, measured by a, which is
unacceptably big. The possibilities for the neutron data will match
our earlier discussion, and all remarks will apply to Appell polyno-
mial expansions through the quadratic Appell polynomials.

(i) Gln/GIp % - 1/2. Can we obtain t his with only the symmet-

ric Appell polynomials contributing to the distribution
amplitude and with an mcceptable a, say a below 700 MeV?
The answer is no. (Our search routine is simple: we scan
on a tight erough grid all the {N } that will give a below
700 MeV, searching for sets of {N } that give Q* G, in the
range 0.9 to 1.1 GeV* and Q* G in the range -0. 4 to -0.8
GeV*, both with a =0.3. There are no such sets.)
Using only anti- synmetric Appell polynomials is clearly
futile, since they give G 2 G . A distribution ampli-
tude that works quite 'e11 at 3171ng both G and G'n is
(for P =1, a =0.3, and a = 0.39 GeV).

fu(x) = [0.38 GeV ] X XoXq [;3 - ;1] (31)

This amplitude is perhaps surprising because it is asym-
metric, and Section IV below contains some speculation on
how this might come about. .

(ii) Gin/Glp small, Here we can succeed with symmetric Appell
polynomials. The smallest @ we can find for Q* G, =
1.0 GeV* and Q* G, between 0.1 GeV* is a2 = 0.48 GeV (ior
the record, N = 0 2, N = 0.2, N = 0.57, N = 0.5, all in
GeV? , snd Q G = -0. 07 GQV‘) This a however is only

14



borderline acceptable as it gives a somewhat large <k1> for
the quarks and the difficulties of escaping some problems
associated with the "soft contributions® (see section III)
go like a* or higher.

(1ii) Gln/Glp intermediate. As there was no problem with the
simple symmetric distribution amplitude, there is none
here. The smallest a for the symmetric case and Q* G =
1.0 GeV' is here and is a = 0.37 GeV. (Again for the
record, N = 0.1, N -0.1, N = 0.43, N5 = 0.0, all in
GeV?, and q‘c = —o 28 Gev‘ )

For now it should be empha31zed that the apparent asymptotic G, has
a size as well as a Q* fall-off that can be matched in PQCD w1th
reasonable values of the QCD coupling constant and quark transverse
momenta.

IIT. SOFT CONTRIBUTIONS

The PQCD expression for the form factor can be derived as an
approximation to the impulse approximation. At high @?* only the
¥tail® or high k, part of the wave function is important and this is
the piece that can be calculated in PQCD and substituted into the
usual impulse approximation to obtain the PQCD result for Gl' Note
that while the impulse approximation is the dominant contribution®
to the form factor at high Q’, the same is not necessarily true at
low Q2.

There remain low kr parts of the wave function that can make
contributions to Gu. These are the "soft contributions"™ and are
not included in PQCD. It is (or will be) clear enough that they
fall faster with Q’ than the PQCD or "hard® contributions. How big
are they at Q”s where experiments are done? For the wave functions
defined by Eqs. (21) and (26) the answer is that they are big--
unfortunately or fortunately--but modifications can be made in the
kr dependence to make them small. This will be discussed in this
section.

15



The impulse approximation in the infinite momentum frame formal-
ism can be written in the following symmetric form

ICORT o I CE T EL S TC = AR CR s B

where § includes the spin-isospin part of the wave function, brz are
the transverse momenta of the quarks ir the case where the first
quark is struck (see Fig. 5)

Bir = kyp t %(1"‘1)9
Bot = kor £ 5 %5 8 (33)
bsr=kart3% 4

and e, is the charge of the struck quark. For simplicity,Eq. (32)
will be evaluated only for symmetric quark wave functions in what
follows, and the factored form Eq. (26) will be used with G(kr)
initially taken to be given by Eq. (28). In this case, the impulse
approximation reduces to

g4c(q?) = 4t f; j [dx] #2(x) exp[-[:22+x32+x2x3]q?/2a2]

2
= ![—q‘g (34)
2a

where the function f(€) is shown in Fig. 8 for the case when

'S = ¢y = Xy XgXg Ny ;3(x), (35)

and with N;’ = 0.3 as required if f’ is to fit the asymptotic proton
data. Note that f(£) peaks at ¢ = 100, which corresponds to
§ = 30(CeV/c)? for a = 0.30 GeV, and that it has a maximum value of
about 3 (GeV)‘, about three times larger than the experimental value
of 1 (GeV)*. Furthermore, f({) does not fall to the experimental
value until Q% is greater than 300 (GeV/c)'. This shows that the



low kIr components of this wave function are dominating over the high
k. parts; to make (34) smaller than the hard calculation (25) for
Q; 2 10 (GeV/c)' would require that a® be 30 times smaller, which
would in turn violate the normalirzation condition (30). The result
may appear surprising, since the Gaussian wave function (28) has an
RMS transverse momenta of only {2 2, and falls off rapidly with k..
However, it is not difficult to find a wave function g(k,r) which
will give a smaller result for the impulse approximation, and will
at the same time be consistent with the hard scattering calculation

and the normalization condition. Let

2, 2] /9,2
= ( 12)2 {-A- "[pP ¥ px]/2c + 3¢
s@p = 3her) (-7 e (o3 es?) 2+ enyy)

= Baort(X1) * Bpard (k) (36)
where p, = (kyp- kpp)/[3 and py= (kyq+ kgp- 2kyp) /g -

Choosing € ® 1/16 will prove convenient, and 8 = 6(pp—u)9(pk—s) S0

that @ is 1 if both p_and P) are above £ and otherwise is zero.

The tail falls asymptotically like four powers of momentum as it

should but otherwise is chosen only for purposes of illustration.
The linear normalization condition for g tells us that

A+BI=1 | (37)
with
. ?2/‘2 . 0 o
21 _dx . x+€Q%/x
I= € X+€ 1n X+E (38)
1

17



We will evaluate I numerically (e.g., for € = 1/186, Q’ = 10 GeV’,
and £ = 300 MeV we get I = 51.), but note that

lin Ile, @%/x%) = 5l 125— .
+ » ‘
The usual noraalisation condition takes the form (for the pure
§, case)
2 2
A BBy, 8 1 .72t (39)
a o (1+e) 4879

with f chosen so that the PQCD result gives 2/3 of the experimental
result for Q at Q*=10(GeV/c)®. (We wi 11 allow the soft comtri-

bution to g1ve the remaining 1/3 -- see below.) The overlap term
involves
-(x+y)x /2a
R = I dxdy = (x+€) (x+€y) (40)

and R is easily bounded,

242
2

4

R <

2,2
L LI 2 »om4

This suffices to make the overlap term negligible for the A and B we
will work with below.

At high Q’, a simple formula can be obtained for the impulse
approximation (32), if we use the approximate relations

J1kg] Bpprg D) Bpara®D) = 28yprqxd) [[d%) gy (412)

J16%7) 0000 Bparg®p) = Bparq(xd) [2) g, (kp) (41b)

in which the notation xq for the arguments of g refer to the

18



substitutions
le +(1- xl)ﬂ
sz * - x50 (41c)

kar * - x38

which are the values of the transverse momenta assumed by one of the
wave functions in the integrand when the other is at its peak (where
its arguments h!t are sero). (Note that the approximations (41)
hold only at high Q* when the integrands peak sharply at nt = 0;
they do not work for the product of two gaussians which do not peak
sharply even at high Q’.) Using (41) and (37) the impulse approxi-
mation becomes

v'e, 02 = 42 f[;gé]

. B #)"Z{ e h
* 1-xp+ xg)?{ (1- xp+ xg) % 3‘*§i7

The A* ternm is usually refered to as the "soft contribution®, and
falls asymptotically like Q". The term linear in B contains the
effects of the high momentum tail of the wave function, and its
asymptotic Q’ dependence is a reflection of the high momentum behav-
ior of this tail. Consistency with the hard calculation requires
that B be chosen to reproduce the results (25). Using the form (35)
for ¢, and € = 1/16, '

2
] i>> ~ .00054 N2 43)
<<{1 - X +.x3]2[[1 - Xy ¢ x3]2 + 36x22] 3 (

If we choose a value for N; so that the PQCD calculation gives most
(vis., two-thirds) of the experimental result, then the consistency
condition gives the following value for B:

(42)

2. 2 -2
B=1.24 - = 1.03 x 10 - (44)

if a = 0.3. Now the linear condition (37) gives

A=1-BI=0.42 (45)
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for € = 1/18, Q’ = 10 GeV’, and £ = 300 MeV. Finally, the normali-
sation condition (38) determines a new value of a

a = 0.24 GeV (48)

With this small value of A, the soft contribution to (42) is about
1/3 of the data level, even at its maximum value, which occurs at
about Q* = 10 (GeV/c)®.

Not only does the new wave function (36) show that the hard
scattering calculation dominates for Q' of physical interest, it is
a more realistic model wave function for the transverse momentum
dependence of the proton. The term proporticned to B produces a
tiny high kr tail for the wave function which more accurately models
the power law behavior of the proton wave function expected for
large kr' Adding such a behavior decouples the two conditions (37)
and (39). It is not surprising that this small "tail" (a) contrib-
utes the major part of the strength required for the hard scattering
result, (b) dominates the impulse approximation at large Q' [if the
wave function were exact, the extra term in (42) should reproduce
the result (25) exactly], and (c) that it plays no role in the nor-
malisation of the wave function, which is dominated by small momen-
tum components. Furthermore, the tail is so small that it also
plays no role in the RMS value of k!'

The first term in the sum (36) is the only term which contains
truly small values of k,, and the contribution of this term to the
impulse approximation is the "moft contribution® referred to above.
By moving some of the strength in Eq. (37) to the tail, the soft
contribution has been reduced by a factor of about nine and no long-
er dominates the form factor.

Summarizing, consideration of the tail has resulted in

- = reduction of the soft contributions to Gl by a factor of

about nine, so that at their peak they are below the data,
and

- decoupling of the normalisation condition (a non-perturbative

low momentum effect) from the asymptotic calculation (a high
momentum effect). '

Thus, the soft contributions do not necessarily dominate the
PQCD contributions to the form factor.
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IV. COMMENTS AND CONCLUSIONS

In conclusion, the following comments are offered.

1. Pactored wave function. For simplicity, a factored form for
the wave function has been used in this paper. This is probably an
oversimplification; the correct wave function is not likely to be
factorisable. The hard and soft regions of transverse momenta could
easily have different x-dependencies, and this can give us signifi-
cant extra freedom to manipulate the hard and soft contributions.

2. Asymptotic ratio Glplgﬂr. It has been noted® that at very,
very high Q’ (that is, 1n 1ln Q°>>1) only the zeroth Appell polyno-
mial survives and the proton form factor goes to zero relative to
the neutron form factor. It should also be noted that in this limit
the neutron form factor is positive, so that the neutron form factor
must have a sero’* at some large but finite Q%.

3. Cherpyak and Zhitnitsky distribution amglitude.‘ Chernyak
and Zhitnitsky have proposed a distribution amplitude for the pro-
ton. Their distribution smplitude is gotten by supposing an expan-
sion in terms of the six lowest Appell polynomials and fitting to
six moments that are calculated using QCD sum rules, and is

#(x) = x;x%3(0.111§ - 0.2743, - 0.212¢,

+ 0.248§, + 0.221§, + 0.002;) CeVZ.

This distribution amplitude gives a good account of Glp’ gives G“n ™
-(1/2)Gup, and is quite asymmetric. While this distribution ampli-
tude is not uniquely forced by the calculated moments, those moments
do not allow the possibility of no asymmetry.
As an amusement, examine the hard scattering expression for G!

and note that every single term there is positive if No, N; and N‘
have one sign and Nl, N', and N5 have the opposite sign. This is
just the sign pattern in the Chernyak-Zhitnitsky distribution ampli-
tude, excepting the last term whose coefficient is too small to be
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significant. The QCD sum rules have thus led to a distribution
amplitude which satisfies one clear criterion for maximising Glp'

4. Asymmetric wave function. The sorts of wave functions that
fit both the neutron and proton form factors are quite asymmetric in
the three quarks. This is perhaps a surprise and it may be worth
speculating how it may come about. First, note that the distribu-
tion amplitude, which is a transverse momentum integrated wave func-
tion, is dominated by the high k! part of the wave function (if the
wave function falls as a power of kT as expected from PQCD). At the
same time, the normalization (which unlike the distribution ampli-
tude is gotten by squaring the wave function before integrating) is
dominated by low kr' The expectation of near symmetry among the
quarks comes from calculations of things like the charge radius or
magnetic moment that are like the normalisation in being dominated
by the low k! part of the wave function, and the x-dependence asso-
ciated with this could be quite symmetric.

Why, then, might one expect an asymmetry at high kr? Think of
quark-quark scattering, or equally well, electron-electron scatter-
ing at very high energies. There is a large, angle-dependent spin
dependence. At 90° in the c.m., the amplitude for scattering two
same helicity electrons is twice the -agnitudé of the amplitude for
opposite helicity electrons. Righ kr quarks result from a hard
scattering of low kr quarks, and this amplitude is spin dependent.
The pair of quarks with same helicity are more likely to scatter
each other out to high k,r than other pairs of quarks, and this same
scattering will likely also scatter the quarks forward and backward
so that one of the same helicity quarks will have a large share of
the longitudinal momentum. This is just what is seen.

To conclude: the magnitude and sign of either nucleon magnetic
form factor can be fit with a broad distribution amplitude, and
consideration of both nucleons together suggests an asymmetric spa-
tial part of the distribution amplitude. Finally, the soft contri-
butions may be below the asymptotic QCD results in the range where
experiments may support the latter.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Data for Q‘ Glp plotted vs. Q’. (Taken from Ref. 8.)
The two dashed lines indicate how the data would behave
. " 2 ~ 8
if Gup 1/Q° or Glp 1/Q°.

The process giving Glp' Three parallel moving quarks
enter the circle labelled Tll where one of them absorbs
the photon entering mainly from a transverse direction,
and them shares the momentum with its fellows sc that
three parallel quarks emerge.

Lowest order perturbation diagrams for Tl' The small +/-
signs indicate quark helicities.

an/Gln for the simple symmetric wave function, plotted
vs. the power parameter for 7.

The impulse approximation which generates both hard and
soft contributions to the form factor.

The function f(f) defined in Eq. (34).
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